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Summary

The accuracy is computed of a computational procedure for rapid estimation of frequency response
functions from stereoscopic dynamic data. It is shown that reversal of the order of the operations of coor-
dinate transformation and Fourier transformation, which provides a significant increase in computational
speed, introduces error. A portion of the error can be made arbitrarily small by prescaling frequency
data prior to coordinate transformation. The remainder of the error, which cannot be eliminated, results
from components of motion normal to the camera focal planes. Spectral analysis of the dominant error
term shows the presence of harmonic and cross-modulated spectral peaks caused by the nonlinearity of
the perspective projection from spatial coordinates onto focal plane coordinates. Only when the camera
geometry is such that all motion is parallel to both camera planes is the spatial transformation linear and
no error introduced.

The full 3 x 3 frequency response matrix of a vibrating structure can be estimated from a single stereo-
scopic dynamic data set only if the driving function consists of three orthogonal mutually independent
stochastic processes. Otherwise three independent sets of separate measurements are necessary. A least-
squares procedure for estimation of the full frequency response matrix, column by column, for the latter
case is developed.

Introduction

Close-range photogrammetric techniques have application to remote measurement of displacement
in aerospace structural testing. Through the use of these techniques, the motion of multiple targets
on a vibrating surface can be recorded by means of a stereoscopic digital camera system as a pair
of two-dimensional (or equivalently, a four-dimensional) sampled-data time series. Originally the four-
dimensional coordinates of each stereoscopic data point, recorded for each target at each sampling time,
were transformed into three-dimensional spatial coordinates by means of the direct linear transformation
(DLT) algorithm (ref. 1). Cross power spectral matrices were then estimated in spatial coordinates
through the use of averaged discrete Fourier transformation (DFT). Kroen and Tripp (ref. 2) showed
that the operations of coordinate transformation (DLT) and frequency transformation (DFT) may be
comimuted subject to certain restrictions, i.e., limitation of displacement normal to camera focal planes.
The computation time per point required for Fourier transformation and averaging is negligible compared
with that for coordinate transformation, which is required only for each averaged data point in the
DFT-DLT transformational sequence. Thus, reversal of the order of operations produces a significant
computational time savings (typically a factor of 125, ref. 2) at the cost, however, of error due to the
nonlinearity of the direct linear transformation whenever components of motion exist normal to either
camera focal plane. )

This paper derives an analytical upper bound on the magnitude of the error incurred by the DFT-DLT
operation sequence as a function of test geometry and perturbation amplitude. A procedure using the
DFT-DLT transformational sequence is also developed for least-squares estimation of the general 3 x 3
frequency response matrix.

Symbols

A projection matrix defined in equation (20)

Aj; jth row of matrix A

a damping rate; power series coefficient; general scalar element
agj element of matrix A

ax defined in equation (111)

B general matrix
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Jomn.r.g

N

ratio defined in equation (107)

power series coeflicient

defined in equation (112)

maximum perturbation magnitude defined in equation (74)
perturbation matrix defined in equation (24)
matrix defined in equation (50)
camera focal length

power series cocefficients

mapping defined in equation (28)
mapping defined in equation (21)
diagonal matrix defined in equation (70)
power series coefficient

power series defined in equation (118)
defined in equation (113)

expected value

error defined in equation (35)

error defined in equation (63)

error defined in equation (65)

defined in equation (116)

error defined in equation (66)

Fourier transformation of function f(t)
perturbation function

driving function

frequency response matrix

veetor in OBJ coordinates

tth diagonal element of H(w)

defined in equation (157)

Jth column of H(w)

defined in equation (58)

identity matrix

V=11 integer

integers

scale factor

rotation matrix defined in equation (1)

rows | and 2 of matrix M




M3 row 3 of matrix M

M, composite matrix defined in equation (13)
N number of averaged records

Pa generalized inverse of matrix A defined in equation (23)
P, constant matrix

Ryuy(r) autocovariance matrix

Rwu(7) cross covariance matrix

Syu (W), Suu(w) autospectral matrices

Swu(w), Swu(w) cross spectral matrices

Sgg(w) autopower spectrum of g(t)

Suu ; (w) jth column of Syu(w)

T record length, seconds

t time, seconds

Uy constant vector

oU(t) input driving vector in object space
6U(w) = F[6U(t)]

u,v general vectors

éu(t) input driving vector in DFP space

v; tth element of v

%74 point in object space

w coordinates of point W

w' focal plane image of W

Wg(t) normalized magnitude of s W(t)

OW (t) time-varying perturbation in object space
OW(w) = F[6W(t)]

w point in DFP space

ow(t) time-varying perturbation in DFP space
Xe.Ye, Z, object space coordinates

Xp,Yp, Zp object space coordinates of perspective center
I, Y.z focal plane coordinates

Z diagonal matrix defined in equation (19a)
YA diagonal perturbation matrix defined in equation (19b)
0Zp|F(6w)] diagonal matrix defined in equation (40)
a, constants

'y matrix defined in equations (162), (165), and (167)
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kg

w
wo
Subseripts:
k

p

2
Superseripts:
T

*

4

least value of ~(t)

element of Ay

angle between 6 W (t) and ¢-axis
perturbation symbol

RMS error defined in equation (173)

maximum relative perturbation defined in equation (73)

relative RMS error defined in equation (82)

RMS error defined in equation (171)

maximum negative relative perturbation defined in equation (78)

vector defined in equation (11)
orientation angles (fig. 3)

=7 1AT,

eigenvalue of (ATA)"!

Jth column of Ay

constant defined in equation (53)
perspective center coordinates
transformed autospectral matrix

transformed cross spectral matrix

condition number of matrix A defined in equation (69)

clements of Lyy(w) and Twu(w)
Jth column of Xy yu{w)

time

PC coordinates of point W

focal plane image of Y
frequency. rad/sec

damped frequency, rad/sec

k =1 for camera 1; k = 2 for camera 2
perspective center
camera |

camera 2

matrix transpose

complex conjugate




Abbreviations:

DFP dual focal plane

DFT discrete Fourier transformation
DLT direct linear transformation
FP focal plane

max maximum

OBJ object

PC perspective center

RMS root mean square

Mathematical notation:

A .

= is defined to be

Il vector or matrix norm

A caret (") over a symbol denotes an estimated value.

Development of Projection Equations

The three-dimensional position of a vibrating target point W is remotely sensed as a function of
time by means of a stereoscopic camera system which employs two cameras focused on W, as shown
in figure 1. The image of W, denoted by W' appearing in each camera focal plane is modeled as a

Camera 1 - Camera 2

Perspective center

W
object

Figure 1. Stereoscopic camera geometry showing images of object W on camera focal planes.

perspective projection. That is, W projects onto the point of intersection of the camera focal plane with
the line passing from W through the persective center, Wy, (the lens center, ref. 3). For the perspective
projection geometry, as shown in figure 2, define three sets of spatial coordinates: object (OBJ) coordinates
X¢,Ye, Zc; perspective center (PC) coordinates £, 7, ¢ whose origin is the perspective center; and focal
plane (FP) coordinates z,y, z whose origin lies on the focal plane. The PC and FP coordinate systems
are parallel and displaced from one another by focal length ¢ in the z-direction, but they may be rotated
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T 3
T

Foca! plane

Perspective
Y center

X .
0BJ coordinates ¢ PC coordinates FP coordinates

Figure 2. Perspective projection coordinate systems showing projection of object W through perspective center onto
image point W' in focal plane.

Figure 3. Angles of exterior orientation showing rotation from coordinates (Xe, Ye, Z¢) into coordinates (xg, yi. 2k)-

in space relative to the OBJ coordinate system. The rotational transformation from OBJ orientation to
PC-IF'P orientation is computed via rotation matrix M (ref. 3) where

cospeost  singsingeostd 4+ cosysind  sinsin @ — cosysin g cosl
M= | —cos¢sind cosyeost —sinysingsind  sincos 0 + cospsingsind (1)
s — s cos @ COs Y Cos P

See figure 3 for angle and coordinate definitions.




Refer to figure 2 for the following steps. Let the object (OBJ) coordinates of object point W be denoted
by

W=[X. Y. ZJ5g; (2)
and let the perspective center (PC) coordinates of W be denoted by

T=[¢ n < (3)

Let W, denote the coordinates of the perspective center in OBJ coordinates as
Wo=[X, Y, 74 (4)
p P 14 PIOB]

The transformation from OBJ coordinates to PC coordinates is then

€ Xc - Xp
T=1{7 =M} Y. - Y, (5)
¢ Jprc Ze = Zp ) 0By

Image point X' = [¢/ ' ¢'|T, the point of intersection of the focal plane with the line passing from
T through the perspective center (the origin in PC coordinates), is obtained by scaling Y so that its ¢
component equals —c. Thus,

!
(e (¢ . (X=X,
—¢ ) pc $Jpc Ze — Zp } omjy

is the perspective projection point of W in PC coordinates. It is transformed into focal plane (FP)
coordinates (whose axes are parallel to the PC coordinate axes) by translation to the focal plane. Let
(zp, yp,c)pp denote the FP coordinates of the perspective center and let (z,y,0)pp denote the FP
coordinates of the perspective projection image point. Then the PC coordinates of the perspective

projection image point may be expressed as
el .
S Ip
—€Jrc FP ¢ )JFp

Thus the transformation from OBJ coordinates to FP coordinates, obtained from equations (6) and (7),

is
I — CIZp c XC - Xp
Y=Y :—EM YC_Yp (8)
—¢ )Fp Ze = Zp ) 0By

By means of the two cameras, a subset of the three-dimensional object space is mapped into the two
focal plane coordinate systems, which can be viewed as a four-dimensional, dual-focal-plane (DFP) space.
Let subscripts 1 and 2 in the sequel denote cameras 1 and 2. Let M2 denote the 2 x 3 matrix consisting
of rows 1 and 2 of M, and let M3 denote the third row of M. Also let

/

cw 8

w=[z1 y1 72 wplf (9)
wi=[zy )T (10a)
wo =[xz yo]” (10b)

and
o=l ¢l (11)




Apply equation (5) to cameras 1 and 2 and combine to obtain an expression for ¢js as

))(/m
|
. X, Moo || 7
;MZ{Q}_MS. Ye p — | ————m - (12)
Ze 0o | M3||Xee
! Yy,
Zp,
where
M
M3

To obtain the elements of w, similarly apply equation (8) to cameras 1 and 2. Extracting rows | and 2
of equation (8) for cach camera and combining gives

)Y(m
TETop 12 | P1
{ b1 — Upll } 1 —(/‘lMi‘2 Xe ciM; } 0 Zy, "
e =-——= Yo p 4+ | 0 —rl 14
2T —eaMy? Z l 2] | x
{ Y2 — Ypo } 2 2¥l9 c 0 i (‘2:[\/‘[2 Y:j
Zp,

Let oW = [6 X, 6Y, (SZ,;]T be a perturbation in W. From equation (12) the corresponding perturbation
(5§M is
; 6 X,
: Jay - f .
o 2 100U Loy, § =M oW (15)
(‘)§2 57 ’
C

Now substitute the elements of w + dw.¢ps + d¢py. and W + W into equation (14) for the elements of
w. ¢, and W, and subtract equation (14) from the result. This yields

. rq — ) ox
561 {“ P } + (51 + 661) { : ‘} 127 (6X,

~ — b —cM ¢
,,;f/_l__y_f’i_______,_ﬂ.ﬁf’h i 5Y, (16)
. Tro — I - I9 1,2 :
8 p2 L 4 16 { : } —cM 0Z¢

G2 { Y2 — Yng } (2+862) | 40 2 ¢

Equations (15) and (16) are combined to obtain

_ _ | - -
Ty — Ip, { 0
! .
1.2 yi—y : 0 3 0X, (g1 + 1) {Ml }
i il I O Ml v b o (1)
. L ; I
. Ml,? | Md (‘)Z, + 6 { _ }
c2Mo 0 : o — Tpy 2 ¢ (2 + 6¢2) §ya
|
|
i 0 Y2~ Ypy | |
or in matrix notation, by letting éw = [bxy by, oz9 (5y2]T
AOW = (Z +6Z)6w (18)




OBJ coordinates

Figure 4. Convergent projection geometry showing projection of object perturbation § W onto image perturbations dwq
and dwq in focal planes 1 and 2.

where
S1 0 0 0
_ {0 ¢a 0 0
Z= 00 ¢ 0 (19a)
0 0 0 ¢
(Sg‘l 0 0 0
10 b¢gq O 0
SZ=14 0 6q 0 (19b)
0 0 0 (53‘2
and
. T — Tp, 0 )
My - 0 M
A= _c_l__i_z T Y e (20)
0 Y2 — Yp,

An illustration of perturbations §W and §w appears in figure 4.
The projection equation for éw as a function of 6 W can be cbtained from equation (18) as a mapping
D 4 from OBJ coordinates into DFP coordinates as

w = (Z+6Z) "L A6W 2 D, (5W) (21)

Matrix (Z + (SZ)_1 exists whenever no perturbation in the ¢-direction intersects the (€,7) plane (which
intersects the perspective center and is parallel to the focal plane, as shown in fig. 2). Equation (21)
defines éw as a function of 6 W, since the elements of éZ are obtained from equation (15), which is
dependent only on §W. If matrix A has full rank (rank 2), then from equation (18) one can obtain

SW =PA(Z +6Z) bw (22)

where
Py = (ATA)_I AT (23)




Matrix P4, a generalized inverse (ref. 4), is the two-sided inverse of A over the range (column space)
of A.

It is now shown that 6Z is dependent only on éw in equation (22) and that equation (22) thercfore
defines a mapping D from DFP coordinates into OBJ coordinates which is the inverse of mapping D 4.
Define a matrix containing the elements of éw (with the help of eq. (9)) as

or1 0
0 0
C(sw) = | 3! 52, (24)
0  dys
which yields the identity
8Z sw = C(ow) d¢pg (25)

Irom equations (15). (22), and (25) one obtains an expression for d¢ps as
O0¢ps = McPAZ ow + McPAC(6W) 6¢pr (26)

which is solved for 6¢ps to obtain
S¢pr = [I=MPs Clow)] ' M(PAZ 6w (27)

Thus. whenever [I—McP s C(éw)] is nonsingular, equations (22), (25), and (27) can be combined to
obtain

SW =P {Z+ Clow) [1-MPA Cow)] ' MPAZ} bw 2 D(sw) (28)

From equations (21), (22), and (28) it is seen that
OW = D [D4(6W)] (29)
and D is a left inverse of D 4. In the applications for which this study is intended, every value of éw will

be contained in the range of mapping D 4: that is. éw will be the image under D4 of some perturbation
AW in OBJ coordinates. Thus, if dw = D 4(6 W), then

DA[D(6W)] = D4 {D[D4(6W)]} = D4(6W) = bw (30)

Hence. D is the right inverse of D4 over the range of Dy4. Equation (28) shows that. in general, D is
noulinear in ow.

Error Caused by Commutation of Coordinate Transformation and Fourier
Transformation

Let 0W (t) and ow(t) denote time-varying perturbations of W and éw. (The (t) notation will often

be suppressed in the sequel except where needed for emphasis or clarity.) Fourier transformation of vector
functions 6 W(t) and ow(t) is obtained by componentwise scalar Fourier transforination as

\ 0 Xc(w)
FpW(t)] =3 8Ye(w) (31)
6 Z0(w)

and

21(w)
Flow(1)] = ‘71“((“’; (32)
(w)
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which are complex-valued vector functions of w. Mapping D is extended to complex-valued vectors by
the relation

D(u+iv) £ D(u) +4 D(v) (33)

If D were linear, then (since Fourier transformation is a linear operation) composition of mapping under
D and Fourier transformation would be commutative. However, because of the nonlinearity of D, it
follows that

FIsW()] = F{D[sw(t)]} # D {F [sw(1)]} (34)

If the perturbation magnitudes are small, the error

E(w) 2 D{F [bw(t)]} — F [sW(t)] (35)

may be acceptably small. An expression for E(w) is now obtained.
1t is easily shown that for nonsingular matrices Z and Z + 6Z

(Z+62)" =271 [1—5Z(Z+5Z)—1] (36)
Substitute equation (36) into equation (21) to obtain
swit) =2} {A W (t) - 6Z(t)[Z + 6Z(t)] L A 6W(t)} (37)
The Fourier transform of equation (37) is then
F(éw) =171 {AF(&W) —Fl6Z(Z+6Z)"" A 6W]} (38)
To obtain D[F(éw)], substitute F(éw) into equation (28) for dw to yield

D[F(6w)] = P {Z + 6Zp[F(6w)]|Z} F(6w) (39)

where

0Zp[F(6w)] = CIF(6w)|{T - McPA C[F(sw)]} ™' McP o (40)
and C[F(éw)] is obtained by substitution of F(éw) for éw into equation (24). Combine equations (38)
and (39) to obtain

DIF(§w)) = F(6W) —Pa F [62(Z +62)"" AsW]

+PASZR[F(5w) {A F(6W) - F [6Z(Z + 62) 1A6W]} (41)
The expression for E(w) is obtained from equations (35) and (41) as

E(w) = —PA {1+ 6Z5[F(6w)|} F [6(Z +62) "' A6W| + P 6Zp[F(6W) AF(6W)  (42)

Determination of Error Bounds

Let ||v|| denote the Euclidean norm of an n-element vector v, where

n 1/2
NE (z 2) (43)
1=1



and let ||A|| denote the norm of a rectangular matrix A, where

IIAVII
fo vl

INE (44)

(ref. 5). The value ||A Y],
when A~1 exists, equals the inverse of the smallest singular value of A. It follows from equation (44)
that

[Av] < [[A[l-Iv] (45)

and that there always exists a v for which equality holds in equation (45). It can also be shown (ref. 5)
that

IAB| < [|A]- B (46)

where A and B are conformable matrices. The triangle inequality for vector norms given by

Ju+ v < flufl + (vl (47)
is true also for matrix norms (ref. 5) as

A+ BJ| < [[A[l +B| (48)
In the sequel, it is assumed, realistically, that the norms ||§W(#)|| and ||F(§ W)|| are bounded, and that

(6W ||2dw exists.
Take the norm of equation (42) and apply inequalities (45) to (47) to obtain

the integral [ |

IE@ < [Pall- T+ 06Zp(Few)l - |[F [02(2 +62) ' Ao W] ||
P Al AL oZp (W) |- [F(oW)] (49)

Inspection of equation (49) shows that when ||[6Z p[F(éw)]|| is sufficiently small, E(w) is dominated by
PA F [(‘5Z(Z + (SZ)”IA(SW]. It is now shown through the use of equation (40) that ||6Z p[I"(oWw)]|| can
be made arbitrarily small by appropriate scaling of F(éw).

From equation (24) it is seen that

oz (w) 0
C[F(sw)] = "yl(“) m"(w) (50)
0 oya(w)

[t is readily shown that the norm of C[F(éw)] is bounded by
ICIF (W) = max [[low (W)l [ewa(w)ll] < [|F(ew)] (51)

It can be shown (ref. 4) that for any square matrix A, if |A|| < L. then (I - A) " Lexists, and its norm
15 bounded by

1
I =AM < — (52)
1—||A|l
Let
v=Mc-[[Pall-|F(ow)]| (53)
It follows from equations (46), (51}, and (53) that
IM(P o CIF(sW)][| < (54)

12




By the result cited above (inequality (52)), if v < 1, then {I — M(P4 C[F((Sw)]}—l exists, and thus
SZp[F(6w)] (eq. (40)) exists. It follows from equations (52) and (54) that

~ 1 1
I-MP CIF(swW)]} 71| < < 55
“ { < [ ( } H 1— ||MgPAC[F(5W)]H 1—-p ( )
Take the norm of equation (40) and use inequalities (46), (51), and (55) to give for v < 1
1
Iz (Fiowll < Mgl 1Pl (1= ) 1FEw)] (56)
Inequality (56) may be rewritten as
16Zp[F(6W)]|| < bz (57)
where
1
e = IVl [PAl (12 ) 1wl (58)
Let F'(6w) be scaled by factor 71( so that equations (53) and (57) become, respectively,
1
v = MGl IP Al (1 (EW) [lmax (59)
and
67 -[iF(aw)] “ <he (60)
Flk K

Thus K can be chosen sufficiently large to ensure that v < 1 is satisfied and to make ”(SZF [%F(éw)] H

arbitrarily small, as was to be shown.
The effect of scaling F(éw) in equation (49) can now be determined. Replacement of D[F(éw)] in

equation (39) by KD [71( F(éw)] yields

KD {%F(éw)} =P, {z + 62y [%F(aw)} z} F(6w) (61)

Define scaled error Eg(w), corresponding to E(w) in equation (35), as

1

Ex(w) 2 KD [K

F(6w)} — F(6W) (62)
The expression for Ex(w) analogous to equation (42) is written as
Ex(w)=—Pa {1 +6Zp {%F((Sw)] } F[52(2 + 62) 7 A 6W]
+ PAGZy [;{_F(aw)] AF(5W) (63)
Through the use of equations (60) and (63) it follows that the norm ||Eg{w)|| is bounded by
IEx ()] < (1 E %h) IPall-|F {6211z + 6z AsW (D) } |
+ hallPAl AL IFEW (64

13



The first Fourier transform term in equation (64) cannot be analytically evaluated even for simple
time functions because of the inverse factor [Z 4+ 6Z(t)]~!. This fact prevents determination of a useful
bound. However, the integral of |Eg(w)||? over w can be bounded analytically, as will now be shown.
Let

er(t) = |[Pall6Z(t)(Z + 6Z(t)) " A 5W(t) (65)

and
exclt) = (14 hs ) er(t) + g halPal- [AISW(0 (66)

From equations (64), (65), and (66), it is seen that

[Ex (@I < [IF [exc ()] (67)

|4

Take the norm of equation (65) and apply inequalities (45) and (46) to give

ler ()] < al|D2(t)| - [lo W (B)]] (68)
where
o =|Pall- 1A (69)
and
D.(t) = 6Z(1)[Z + 6Z(t)] "} (70)

Each nonzero element of D(t), which is diagonal. is of the form

0ok (t)/sk
1+ [0, (t)/sk]

where k£ =1 or 2. Factor 6¢,(¢) is obtained from equation (15) as

bk () = MESW (1) = cos e (1) o W (1)) (71)

where () is the angle between §W () and the ¢-axis. If 4y is the smallest angle attained for any ¢
between §W(t) and the ¢g-axis, then it follows from equation (71) that

‘bgk(f«) < (‘()S’Yk‘ W ()] (72)
Sk Sk
and that
NIV '08 A .
€M 2 nax il )] = (" max (0\%\ (73)
kt | <k k Sk
where
C = max [[s W(t)] (74)
Define |
We(t) = S 1eW (o) (75)
Combine equations (72) through (75) to obtain
o (t .
20 < Wit (76)
Sk
Then it follows from equations (70) and (76) that
[§
ID= (O] < TH-Wp(1) (77

2

14




where

: 5§k(t)]
= 0 78
o= nip o757 e
Therefore from equations (68), (75), and (77), |le(t)|| is bounded by
¢
ler()ll < o 2—-CWE() (79)
z

To bound |leg(t)|| apply equations (69), (75), and (79) to the norm of equation (66) and simplify to
obtain

1 1
lex ()] < (1 + ha) U%C WR(t) + hs0CWr(t) (80)
r4

Square equation (80) and use the fact that |Wg(¢)| < 1 to obtain

|mKUNZS(acF{(1+§§)2(EM')2wﬁa)

]._(z

B ) (2)- 4w

The relative RMS error is defined as

]1/2 }1/2

/%% Bk ()2 do (123 lex (1)1 i
<

(oo nrewlzas] "~ (o5, lsw )2 e’

€ERMS = /2

The inequality in equation (82) follows from Parseval’s theorem (ref. 6) and inequality (67). The integral
in the denominator of equation (82) is evaluated by means of equation (75) to obtain

/°° IEW(t)[2 dw = 2 /_°° W2 (t) dt (83)

Integration of equation (81) over ¢t and division of the result by equation (83) yields the bound to
RMs 3S

oot () 2 P ) () 2]

where
o =IPall ] (69)
e = MGl IPAT (= ) 1(6w) e (58)
v = IV P AT F (W) (59)
=[5 ™
o 6 (2)
= [o 25| )

15




and from equations (74) and (75)
[EW ()]

WP = oW (1]

The terms involving h,/K in equation (84) can be made negligible by scaling F(éw) through suitable
choice of factor K. Scaling F(éw) in effect limits the distortion caused by its projection from DFP
coordinates to OBJ coordinates via mapping D. On the other hand, the error due to distortion caused
by projection of §W{(t) from OBJ coordinates to DFP coordinates. represented by the remaining term in
equation (84), is independent of scale factor K. This portion of the error is roughly proportional to the
¢ component of dW (t), represented by the ratio epr/(1 — ¢).

If K is chosen sufficiently large so that the terms involving h./K are negligible in equation (84), then
¢rMs is bounded by

] 1/2

¢ J2 W) dt ¢

The second bound in equation (85) follows from the fact that since 0 < Wg{t) < 1, then

0 <Wh(t) <Wi(1) (86)

and therefore the ratio of integrals in equation (85) is bounded by uuity.

Recall that [JA] equals the largest singular value of A. It is easily shown that ||P || equals the square

root of the largest eigenvalue of (ATA) 1, which equals the inverse of the smallest nonzero singular
value of A. Thus ¢ equals the ratio of the largest singular value of A to the smallest nonzero singular
value of A, defined as the condition number of A (ref. 5). Matrix A tends to be poorly conditioned (o
large) if cameras 1 and 2 are closely spaced with nearly parallel focal planes (angles ¢ and ¢ small in
fig. 4) or if they are nearly opposed (¢1 and @9 close to m/2 in fig. 4). Matrix A is well conditioned (o
close to 1) if the prineipal axes are coplanar and at right angles to cach other (¢ and @2 equal to 7/4 in
fie. 4).

Evaluation of Bound for Exponentially Damped Sinusoidal Perturbation Functions

Inequality (85) is evaluated analytically for the special case where §W (1) is a vector of fixed direction
of varying magnitude. Let

SW () = h /(1) (87)

where h is a vector in OBJ coordinates.
A typical perturbation function encountered in structural vibration testing is the exponentially damped

sinusoid ; )
| em M sinwyt (t>0
/() = { 0 (t < 0) (88)

The mininmum value of e~ sinwyt occurs for wyt approximately equal to 37/2. Therefore
(2 = (ppe 3T/ 20 (89)

Analytic evaluation of inequality (85) for this case yields the bound

3w 1/2
‘M 0 ¢
(RMS S 0 ( ) : - (90)
L~/ |8(4a2 +wd)
A similar computation can be performed for the exponentially damped cosine perturbation function
e eos wyt (t>0)
1) = = 91
i={""% 20 (91)
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to give

€M ) (16(14 + 28a%wi + 3w3) (92)

€ <o
RMS = <1 — €z 64at + 48a2w8 + 8w3

For metal structures, typical values of a/wq seldom exceed 0.02, in which case inequalities (90) and (92)
reduce to

€
erMs < 06130 < M > (93)
1—¢,
Numerical studies showing computed errors for damped sinusoidal perturbations compared with maximum
errors predicted by equation (93) are presented in reference 2.

Geometric Examples

Figure 4 illustrates an example of typical geometry in which the y;- and yg-axes are parallel to the
Zc-axis, and the coordinates (£1,¢1) and (&2, ¢2) are rotated from the (X,,Y,) coordinates by angles ¢;

and ¢9, respectively. Let the object W be located at the intersection of the normals to each focal plane.
Rotation matrices M; and My are then

cos¢r singr O
M, = 0 0 1 (94)

singp, —cos¢ O

for £ = 1,2. Matrices A and M. defined in equations (20) and (13), are constructed from M; and My

as

cicosgp;y crsing; O
-0 0 c1

- coCOS¢py —cgsingg 0O (95)
0 0 c9
and ng 4 0
__|sme@; —cos¢q
M, = {sin ¢ —cCoS @ 0} (96)

If constants are chosen such that ¢ = —¢1, ¢1 = ¢, ¢1 = ¢, ¥1 = o = 7/2, and 8} = 03 = 0, then the
matrix product ATA is

cos? ¢ 0 0
ATA=22| 0 sin?¢ 0 (97)
0 0 1
The norm ||A ||, equal to the square root of the largest eigenvalue of ATA (ref. 5), is then
1Al = Ve (98)
The norm ||P 4 ||, equal to the square root of the largest eigenvalue of (ATA)71, is
1Pl ! ax(sec ¢, csc @) (99)
= —m ,
A \/§C
Similarly, it is determined that
M| = V2max(sin ¢, cos ¢) (100)
For this case
o = [P All- | A]l = max(sec ¢, csc ¢) (101)

Note that if §W(t) is confined to the Zc-direction then 4; = 42 = 7/2, and hence by equation (73)
erp = 0.
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Camera 1 Camera 2

~ - e B
Focal plane W., 2

—

X
c

0BJ coordinates

Figure 5. Parallel projection geometry showing projection of object perturbation §W onto parallel focal planes.

In the second geometrie example, shown in figure 5, the OBJ and DFP coordinate systems are parallel;
the camera focal planes are coplanar; focal lengths ¢ and eg are equal; and points Wy, , Wy, and W lie
on the plane Y, = 0. Since 6¢1/¢1 equals d¢a /¢y for this case, it follows that

: s b¢
OZ(Z +62)"! = (—> I (102)
( ) ¢+ o¢
Substitute equation (102) into equation (63), note that matrices P4 and A cancel, and take the norm to

obtain

Ex (@l < (1+ ke )

‘F (g{%gaw) “ + o he W) (103)

Equation (85) simplifies to

(125) [ wawa) "
[ff"oo W2(t) dt] V2

(equivalent to o = 1). Matrices M, and P o, necessary for determination of h; and v via equations (58)
and (59) in the computation of scale factor K, are now obtained. Rotation matrix M is the identity
matrix L since the OBJ and FP coordinates are parallel. Matrix M, is then

(RMS < (104)

w19 o
and ||M.|| = V2. Matrix A is given by
I 0 0
A=c ‘1’ (‘) :2 (106)
01 0
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where

b, = . (1=1,2) (107)
Matrix ATA is
1 0 Ql_ng
ATA=22] 0 1 o0 (108)
bi+b b2 +b2
gtz g 02
Its inverse is -
bi+b bi+b
0 ___1_2_2
(ATA) = A (by—bg)? (109)
G-t | 0 HEt 0
_lujzr_bz 0 1
The eigenvalues of (ATA)_l are obtained analytically as
1 1 2 1 2
/\=@, 2 (ay+by) + (ay+by)"—4 Ea)‘_d’\ (110)
where ) )
__bi+by (111)
2T (b —bg)2e2
2
by = m (112)
. b1+ by
P b e

The norm of ||P 4| is the square root of the largest eigenvalue of (ATA)~1. If h; = —by, then

IPall = 712—cmax<1. 1b1]) (114)

Effects of Error on Estimated Frequency Response Functions

The effects on estimated frequency response functions caused by the computation of F[6W(t)] by the
approximation K D {71{ F [6w(t)]} can be deduced by examination of the error expression in equation (42),
whose dominant part has been shown (see eqgs. (63) and (70)) to be

Ex(w) =Pa F[D,(t) AsW(t)] (115)

for suitably large K. Consider the jth element of D(t) A §W (t), which is

& bg(t)/sk 4
Ej(t) = mAJ(SW(t) (116)

where Aj. is the jth row of A and k = 1 when j = L or 2 and k = 2 when j = 3 or 4. Recall from
equation (15) that

bg(t) = M3 sW(t) (117)
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Expand (6¢k/ckc) /11 + (6¢k/<k)] into a power series

dj(t):—i [—M]n (118)

n=1 Sk

which is convergent for |6¢k(t)/¢c| < 1. For simplicity, suppose that §W(t) contains only two damped
sinusoidal components at frequencies wy and wge. Then 6¢(¢)/¢ will be of the form

b¢(t
%) = are” " coswit + age” 2t cos wat (119)
The jth component of AdW(t) will be of the form
A dW(t) = Bre~ %t coswit + Poe 2! coswat (120)

From equations (116), (118), (119), and (120), a power series expansion for e;(t) is obtained as

oo n
e;(t) = Z Z bpm (t) cos™ ™™ wit cos™ wat (121)

n=2m=0

where the coefficients bpm (t) are weighted sums of products of powers of e~ %1t and e~ %2t By means of
trigonometric identities one obtains

m/2
cos™ wt = Z Crng COS qut (m even) (122)
q=0

where coeflicients ¢, satisfy Z(TIIL:() Cmq = L. or
(n—1)/2
cos™ wt = Z Cimq COS quit (m odd) (123)

q=0

where coefficients ¢, satisfy 3-0% ; ¢ppg = L and ¢, = 0, and finally

1
€08 qwt cos rwat = 5 [cos (qwy + Twe) t — cos (qwi — rw2) t] (124)

Substitute formulas (122) through (124) into equation (121), and simplify to obtain

| 2 n (n—m)/2 m/2
e;(t) =5 Z Z {bnm(t) Z Z dn—m,qdm.r [c0s (qui + Tw2)
n=2m=0 g=0 r=0
+ cos (qw) — rwe) t]} (125)

where dij = ¢y if 7 1s even and d.l-j = (',’l-J- if 7 is odd. Equation (125) shows that the error frequency spectrum
contains peaks at harmonic frequencies (all integer multiples of wy and wg) and at eross-modulated
frequencies (sums and differences of all fundamental and harmonic frequencies). The amplitudes of the
spectral peaks decrease rapidly with inereasing frequency because the nth harmonic is weighted by (/)™
in the power series.
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If the experimenter can identify true modes in D{F[w(t)]} and discard harmonic and cross-modulated
error peaks, then error effects are relatively unimportant to modal analysis, since the fundamental
frequencies are not shifted. However, estimated damping factors may be somewhat in error because
of distortion in the shapes of fundamental peaks.

Estimation of Frequency Response Matrix

The dynamics of a three-dimensional structure, whose frequency response functions are to be identified,
are modeled by a three-dimensional coupled system of Nth-order linear time-invariant differential
equations in OBJ coordinates. Let 6U(t) be a three-element-vector driving function and let §W(t)
be a three-element-vector response function at point §W. Then §W(¢) and 6U(t) are related by

N
d’n
Z d-ﬁPn(SW(t)JrPO SW(t) = 6U(¢) (126)
n=1
where Pg. Py, ..., P, are 3 x 3 matrices of constants. Take the Fourier transform of equation (126) to

obtain

SW(w) = 6U(w) (127)

N
[Z (iw)"Pp

n=0
By means of techniques of linear systems analysis (ref. 7), equation (127) may be solved for §W(w) as
6W (w) = H(w) 6U(w) (128)

where H(w), defined as the 3 x 3 frequency response matrix, is the inverse of Eﬁzo(iw)nPn. It is desired
to estimate H(w) from observations in dual focal plane (DFP) coordinates.

Let epr (eq. (73)) be sufficiently small, so that mappings D4 and D, defined in equations (21) and
(28). are approximated well by

Sw(t) = DASW({)] ~ Z 1AW (1) (129)

and

W (t) = Djow(t)] ~ PAZ éw(t) (130)

Although P is only a left inverse of A, it follows from equation (30) that
2 LAPAZ bw(t) = bw(t) (131)
whenever dw(t) is contained in the column space of Z~ 1A, or equivalently in the range of mapping D 4.
Since all 6w(¢) and éu(t) to be considered are contained in the range of D 4, P A Z and Z~1A are hereafter

treated as two-sided inverses of each other. Therefore éU(¢) and éu(t) are related by

6U(t) ~ PAZbu(t) (132)

su(t) ~ Z71AU(1) (133)

Let §U(t) be a zero-mean multivariate stochastic process which is stationary in the wide sense (ref. 8).
Then §W(t), éu(t), and dw(t) are also zero-mean wide-sense stationary processes. The cross covariance
matrix between 6 W(t) and §U(t) is defined as

Rwul(r) = E [§W(t) sU*T (t - 3] (134)
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and the autocovariance matrix of §U(t) is defined as

Ryu(r) = E [5U(t)5U*T(t —7)] (135)

where E denotes expected value.
The cross-spectral matrix Sywy(w) and the autospectral matrix Syy(w) are defined as

Swu(w) = F[Rwu(7)] (136)
Suu(w) = F[Ryu(7)] (137)
Similarly define in DFP coordinates
Suu(w) = F {E [6u(t) sut’ (1 — T)]} (138)
Swulw) = F{ £ [swi(1) su*’ (1 — |} (139)

It can be shown from equations (130) and (132) that

Suu(w) = PAZ Syu(w) ZPY (140)

Swu(w) = PAZ Swu(w) ZPL (141)

It is shown in reference 9 that if dW(w) and $U(w) are related by equation (128), then Swy(w) and
Syuu(w) are related by

Swu(w) = H(w)Syy (w) (142)

Thus, if Swy(w) and Syy(w) are known. the solution of equation (142) determines H(w). It can
be shown (ref. 9) that if W(t) contains additive noise, then the solution of equation (142) furnishes a
minimum-mean-square-error estimate of H{w).

Since experimental data are recorded in DFP coordinates, it is advantageous computationally (ref. 2)
to estimate Syy(w) and Swyu(w) and to then estimate H(w) by using equations (140) through (142).
Smoothed estimates of Syy(w) and Swul(w) are computed as averaged conjugate outer products of the
Fourier transforms of N observed records of length T of éw(¢) and du(t). Thus the Fourier transforms of
ow(t) and éu(t) for the nth record are

nT .
W (w) = / Sw(t) e~ it dt (143)
(n—1)T
nT .
bia(w) = / su(t) e~ dy (144)
(n—1)T

and the smoothed estimated autospectral and cross-spectral matrices are

N v
Suulw) = % S b (w) 0] (@) (145)
n=1
N 1 N T
Swul(w) = N Z 6Wn(w) (511% (w) (146)
n=1
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Smoothed estimates of Syy(w) and Swy(w) may be obtained from Syy(w) and Swu(w) by means of
transformations (140) and (141) to yield

~

Suu(w) = PAZSuu(w) ZPR (147)
Swu(w) = PAZSwu(w) ZP} (148)
In principle H(w) can be estimated by equation (142), provided Syy(w) is nonsingular, as

H(w) = Swu(w) Sy (w) (149)

If the three components of U(t) are mutually independent stochastic processes, then Syy(w) is a
nonsingular diagonal matrix, from which H{w) is readily obtained via equation (149). If Syy(w) is
nonsingular but nondiagonal, calculation of its inverse in equation (149) for each value of w may be
excessively expensive computationally. If U(t) is confined to a line or to a plane in space, so that

U(t) = g1(t) Uy + g2(t) Ug (150)

where U; and Ug are fixed, then Syy(w) is singular, and equation (149) cannot be employed. Two
alternative procedures for estimation of H(w) are now proposed.

Estimation of Diagonal Frequency Response Matrix

The observed driving function, éu(t), and the observed response function, éw(t), in DFP coordinates
are related through equations (126), (130), and (132). Take Fourier transforms of §W(¢) and §U(¢) in
equations (130) and (132) and premultiply equation (128) by Z~1A to obtain

bw(w) = Z'AH(w)PAZbu(w) (151)
It follows from equation (151) that Syyu(w) and Syy(w) are related by
Swu(w) = Z7'AH(w) PAZ Syu(w) (152)

so that
PAZSwu(w) = H(w) PAZ Syu(w) (153)

If it is known that H(w) is diagonal (interactions between the X, Y, and Z. components are absent),
then H(w) is easily obtained from equation (153) as follows. Let

z:wu(W) =PpZ Swu(w) (154)
and

Zuu(w) =PAZSyy(w) (155)
so that equation (153) becomes

Twu(w) = H(w) Zyu(w) (156)

Then h;;(w) can be estimated by using equation (156) as

. Owu, ; (W)
hiiw) = —H9 (157
’L’L.]( ) Uuuij (w) )
forz =1, 2, 3, and 7 = 1, 2, 3, 4, where aw%.(w) and ouuij(w) are elements of Xyy(w) and Zyyu(w)
and " denotes values obtained from the estimated matrices Swu(w) and Syu(w). If H(w) is diagonal,
then hg; j(w) will be independent of 5. Conversely, if equation (157) is independent of j for arbitrary
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Twulw) and Zyy(w), then H(w) must be diagonal. Thus. the diagonality of H(w) may be confirmed by
computations of hy; ;(w) (eq. (157)) for all 12 combinations of indices for ¢ = 1,2, 3and j = 1, 2, 3, 4

and verification that hy; j(w) is independent of j.

Estimation of Nondiagonal Frequency Response Matrix

In the general case where H(w) is a full nondiagonal matrix. let a unidirectional driving function g(t)
be applied in three independent measurements in the X, Y,-, and Z.-directions separately. One column
of H(w) may then be estimated from cach measurement, in DFP coordinates. of the observed input du(t)
and the observed response éw(t). Thus apply g(¢f) in the Xdirection. Input vector ¢U(t) is then

1
oUt) =g(t) ¢ 0 (158)
0
IExpressed in DFP coordinates, the input vector is
1
ou(t) =g(t)Z7'A{ 0 (159)
0
Autospectral matrix Syy,(w) is then
1 00 .
Sun(w) = sgg(W)Z7 A0 0 0| ATZ! (160)
0 0 0

where sg4(w) is the autopower spectrum of g(t). Equation (160) may be rewritten as
PAZSyu(w) :Syg(w)rk (161)

where (for k =1)

a1 a2] a3) 4]
<1 1 <2 <2

=0 o 0 0 (162)
0 0 0 0

and a;; is the element in the 2th row and jth column of A. From equations (153) and (161), it follows
that

PAZ Swulw) = sg¢(w) H{w) Ty (163)

Autopower spectrum sgg(w) can be estimated from Syy(w) by means of equation (161). Column 1 of H(w)
ix then estimated from the estimated 84 (w) and eross-spectral matrix Syy(w) by means of equation (163).

Columns 2 and 3 of H(w) are estimated in a similar manner. Apply ¢(t) in the Y.-direction for k = 2
to give

0
oUM) =g(1)< 1 (164)
0
and
0 0 0 0
5 = ¢ H2 a2 a3z a42 30
I g e e (165)

0 0 0 0
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Use equations (161) and (163) to estimate sgo(w) and column 2 of H(w). Finally apply g(t) in the
Z.-direction for k = 3 to obtain

0

| 5U(t) = g(t){ 0 (166)
} 1
‘ and
| 0 0 0 0
| Ls3=|0 0 0 0 (167)
‘ 413 423 433 443

S1 S1 $2 §2

Use equations (161) and (163) as before to estimate sgg(w) and column 3 of H(w).

Least-Squares Estimation of Frequency Response Matrix

A method is developed for least-squares estimation of H(w) from equations (161) and (163). Since
Suu(w) and Swu(w) are estimated by means of equations (145) and (146) and since measurements of

u(t) and w(t) are noisy, no values of §454(w) and H(w) exist in general which will satisfy equations (161)

and (163) for estimated matrices Syy(w) and Swyu(w). Thus, in general for every value of §gg(w) in
equation (161)

Suu(w) # 3gg(w) Ag (168)
where
Ap =Z7 AT, (169)
and for every H(w) in equation (163)
PAZSwu(w) # 3gg(w)H(w) T (170)

Optimum estimates of sgg(w) and column k of H(w), denoted by h.;(w). can be determined by choosing

$gg(w) and h(w) such that the sum of the squares of the Euclidian distances between corresponding
columns is minimized in inequalities (168) and (170). Thus, from equation (168) define

4
f% = Z ||§uu.j (W) — égg(W) ’\~jl|2
7=1
4 T
=3 [guu,j (@) ~ ggl) A5] [Buuy (@) = 5gp(w) ,\_j] (171)
j=1

where éuu']. (w) is the jth column of Syy (w), and A.; is the jth column of Ay.

To minimize 2, differentiate equation (171) with respect to §44(w), set the result equal to zero, and
solve for §44(w) to obtain

Sgg(w) = 1 (172)
i1 AT
To estimate h ;. (w), use equation (170) to define
! " 2
6% = Z ||&wu,J (W) — §gg(w) Tk h-j(‘*’)” (173)
7=1
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where gwy (W) is the jth column of PAZ Swu(w) and §gg(w) is given by equation (172). Proceed as

above to minimize (}QL, and solve for h;(w) to obtain

- _ Z?‘:l ij&quJ-(W)
h,k(W) - . 4 2
Sgg(w) Zj:l iy

(174)

where 7y is the element in the kth row and jth column of matrix I'y.

Concluding Remarks

The accuracy of frequency response function estimation from stereoscopic dynamic data by a rapid
computational procedure has been computed. It was shown that the error incurred by reversal of
the operations of coordinate transformation and Fourier transformation includes terms dependent on
the magnitudes of components of motion normal to the camera focal planes (whose effects cannot be
eliminated), as well as on the condition of the stereoscopic projection matrix. Additional error terms exist
which may be eliminated by proper scaling of the Fourier transforms prior to coordinate transformation.
Spectral analysis of the dominant error term, which is dependent on the scale factor, shows the presence
of harmonic and cross-modulated spectral peaks caused by the noulinearity of the perspective projection
from spatial coordinates to focal plane coordinates. Only when the camera geometry is such that all
motion is parallel to both cammera planes is the spatial transformation linear and no error introduced.

The full 3 x 3 frequency response matrix of a three-dimensional structure can be practicably estimated
from one stereoscopic dynamie data set only if the orthogonal components of the driving function are
mutually independent stochastic processes. Alternative procedures have been given for estimation of a
diagonal frequency response matrix and for least-squares estimation of a full matrix, column-by-column
in three independent sets of measurements.

NASA Langley Rescarch Center
Hampton, VA 23665-5225
June 6. 1985
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